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Determination of Wave Noise Sources Using
Spectral Parametric Modeling

Thierry Werling, Student Member, IEEEEmmanuelle Bourdel, Daniel Pasquggnior Member, IEEEand Ali Boudiaf

Abstract—A new method for the extraction of a noise correla-

tion matrix is presented in this paper. This method is based on o L S,, by, b,
a kind of reflectometric technique which needs two noise-power b, % J

measurements corresponding to two different input coefficients (o1

for the extraction of the wave correlation matrix. Then, we mea- I S, S, I,
sure those two noise-power densities emanating from the device

under test (DUT) transistor and compute their inverse Fourier
transform (FT) in order to find out noise-power behaviors in o b S,

time domain. Thus, one may apply spectral parametric modeling Nt

to this power spectral density (PSD) for the estimation of noise rg 1 The representation of a two-port circuit element using scattering
sources that model the DUT noisy two-port. Finally, we calculate parameters and noise waves.

the standard noise parameters of the transistor, and the results

obtained by this new method are experimentally compared with ) )

a conventional method. that, this new method enables us to determine the exact DUT

reference plane and allows tt$g,-parameter extraction.

Index Terms—Correlation matrix, noise figure, noise param-
eters, noise wave, power spectral density, spectral parametric
modeling. [I. THE NOISEWAVE REPRESENTATION

This kind of representation is very helpful for the
I. INTRODUCTION microwave-domain analysis. In the noise-wave representation,
. the noise of a circuit element is described by using waves
HE NOISE modeling

of active devices requires th?nat emanate from its ports. A linear two-port, represented

knov:/lleccijge of fpur dncgls%gfarameters [2]. These parﬁrr_\et%% noise wave and scattering parameters, is shown in Fig. 1.
are usually determined by different measurement techniqu ise waveshy; and by contribute to the scattered waves.

Th? most c_ommonly used S the source—pull tuner teChn'q"f‘ﬁus, the wave variables and scattering parameters satisfy the
which requires an expensive bench (tuner), a large numl?Sﬁowing'

of measurements with several source reflection coefficients,

and a tuner calibration [6]. Faster methods are based on <b1> _ <511 512) _ <a1> n <le) (1)
assumptions that depend either on the kind of transistor studied ba So1 S22 a2 bne )

[MESFET or high electron-mobility transistor (HEMT)] [8]. The noise waves are time-varying complex random variables

Reflectometric methods are another way to extract a devigaracterized by a correlation matrix given by [4] as follows:
under test (DUT) correlation matrix [5]. These methods are 2y (babi) (oxal?)  ©S3
5) (s )

based on noise-wave representation [12], which is powerfulCy = <<|bm 5 )
in the microwave area. Nevertheless, the noise bench built for (bX1bn2)  ([bn2[?) C*Sa1 (|bn2|?)
this method needs two circulators, hybrid couplers, and two 2

different noise sources. ) i ) ) where(.) indicates time averaging with an implicit assumption
The new _method propo_sed in this paper is de”‘,'ed frogy ergodicity and jointly wide-sense stationary processes. The
reflectometric method. It is based on the analysis of thg,yonal terms ofs give the noise power deliverable to the
wave power density in the time domain, which is obtaineglminations in a 1-Hz bandwidth, and the off-diagonal terms
by an inverse Fourier transform (FT) of the measured noiggy correlation products. All noise power are normalized with

power. Thus, we obtain the noise-power distribution in th@garq to thek;, factor wherek is the Boltzmann constant
time domain called wave-signal autocorrelation. This point gf, 4 T, is equal to 290 K.

view allows the use of spectral estimators (parametric models),o output noise power (Fig. 1) is equal ¢8,|?) and its

like the autoregressive (AR) model [1], [7], [9]. Aside fromgyression is given in (3), shown at the bottom of the following
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the {|b2|?) expression in (3) is simplified, as shown in (8), at
the bottom of the page.

RF Lo .
signal : ; After a usual calibration, two noise-power measurements
20dB with different input reflection coefficientsl{; | around 0.8 and
amplifier : LO |I';| close to zero) are necessary to separate the two terms that

= compose (8) and are shown in (9), at the bottom of the page,
---------------------------- : and

Fig. 2. The schematic representation of the NR. 2

e . . o (10)
signal is measured by the HP 8970B noise-figure meter (noise- So1

power measurement mode) in single sideband. For this noise . .
receiver (NR) the standard noise parameters [4], [5] can h be developed in order to make the elecrical _Ie_.\ngth
simplified with the assumption of uncorrelated noise-wa etwe(_enl“l and.Sll appear. Indeed, the load coefficient
sources. Our study has proven that tfe|?) effect can reflection (see Fig. 1) is supposed to be

be neglected. Thus T, = F[101a26—j27rfr _ |1‘*[101|a26—j27rf‘r+<1>' (11)

NR |2
R %1 . b% |14 SNE)2 (4) Equation (9), with knowledge of (11), leads to (12), as shown
4 SH at the bottom of the page, wheyg is called they-signal power
pNR |2 spectral density (PSD) The PSD totally describes behaviors of
FNR o~ 4 < ﬁ > 1= 1S (5) stationary Gaussian processes. Equation (12) may be expressed
21 as
NR ., ¢NR*
- Lope =511 (6) m(f) = alf)+28(f) cos2nfr — @s(f)] (13)
with ) Y 11— p(f)ed2mi72
NR
FNR—14 < % > (7) wherea(f), 8(f), ®3(f), andp(f) are defined by
21
are expressions for the four noise parameters wigfg is o) = (el’) + L Pl )
the noise factor under matched input impedaritg|(= 0). — 25110 cos (@5, — €] (14)
Equation (6) agrees with studies made by using conventional A(f) =0 (15)
methods [6]. Qs(f) =2+ ¢ (16)
IV. THEORY p(f) = "a28;. (17)

We have studied the output noise-wave behaviors of seveEajuation (13) may be written as follows in order to apply
transistors such as MESFET’'s and HEMT's and, in this casspectral modeling such as AR and moving average (MA)

bxo \ bao |2
(Jbe|?) + |1“1|2(|bN1|2>+2Re[1“1(1 —rlsn)*<bm<ﬂ) >} 1 -Ty8y |2 |22
(oal?) S 5o o
|So1|2 |(1—T'1511)(1 = T'2892) — I'1'9512591 |2
([b22) _ ([bel®) + D1 {bna]?) — 211 Re (ST, C) + 2Re (I C) n bz | (8)
|S21]? |1 —T151]? Sa1
v (f) = ([bel®) + P1*(bna]?) — 201 Re (S1,C) +2Re (I',.C) ©)
Y |1 —F1511|2
vy () = (|bE|2> + |F1|2[<|bN1|2> —2|511C| cos (®g,, — ©c)] + 2|1 C| cos 2rfr — ¢ — O¢) (12)

11— F[101a25116—j27rf7'|2
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Reduced Frequency v Frequency f, Autocorrelation
0 f ' sequence
k/N LIRS
(N-1)/N f / Subsequence 1
Fig. 3. Relation between reduced frequency and measurement frequency. Subsequence 2

[ Subsequence 3
modeling [11]: /{\ [

Ai A

()R, (18) 0 K UL U UL 2u U n

Fig. 4. y-signal autocorrelation sequence.
Thus, identification between (14)—(17) and (18) leads to the
following equations:

Lt py(flere P
I+ pol e 777

Yy (f) = 72(f)

where (o3g, c1, -+, cp,) are called AR parameters and
) Pr+1 the AR order. AR parameters are extracted by solving
a(f) =71+ 1o (NI] (19)  (28), called the Yule-Walker equations. It is done by using the
B =v(H)los ()] (20) Levinson's recursive algorithm [13]:
Ps(f) =arg [ps(f)] (21) c,0] G, o OlP) 1
p(f) ==pa(f). (22) Cyl1]  Cy[0] e GylPp—1] c1
G2l G1] CylPr—=2]| . | e
Then we compute inverse FT in order to obtairand by2 : : : : :
autocorrelation sequences. C .[P] c [f; _1] C '[O] cp,
With N ~, data, each element of autocorrelation sequence 52 Y Y
[1], [7] is calculated by ‘SR
N-1 = 0
Cylk] =% D v (f)e RN with 0 <k < N -1 | (29)
=0
(23) 0

. On the one hand, the-signal PSD may be estimated by settin
where f; is the frequency that belongs to the frequency—ran%e coefficients to zero f%z > K in (2% (see Fig. 4): y 9

measurementfuin, fmax)- The AR modeling is a parametric
PSD modeling under the assumption of signal Gaussianity [7].
Before explaining AR modeling, let us introduce the reduced-
frequency variable-. Fig. 3 gives equivalence between the
measurement frequency and the reduced frequency where

(V) = ,UiR . (29)

K
14+ § cie—jQTFVi
=1

verifies ) .
; N1 On the other hand, one may obtain t}ig)|? function by
b {07 SR T} (24) dividing (27) by (28) [see (25)]
27U
We may introduce the parametér that corresponds to the \h()|? = ‘ 1+ pp(v)e J} i (30)
time parameterr (see Fig. 4) so that in discrete frequency 14 po(v)e—i2mvt

domain, (18) leads to

1 —j27rz/U 2
Yy(V) = v2(v) 112"& ;6 —7 %(1/)|h(1/)|2 (25)

where pa(V) = Z pa, e (31)
. B i=—0L

1 +pb(l/)e—127rub B

1 +pa(]/)e—j27rz/U' _ Z pbie_jQTUIi (32)

An AR modeling is used in order to estimate the i=—L

[v2 (1), pa(V), pp(v)] parameters which appear in (25). Theeporting (31) and (32) into (26) leads to
AR modeling decomposes thesignal PSD in the following

Finally, p.(r) and p,(v) coefficients are developed with
discrete FT (DFT):

h(v) = (26)

L
way: . L
14 _6—1271'1/([/ —+i)
oRr i:z—:L "
vy(v) = S 3 (27) hv) = — . (33)
1+ Z cie—j27ﬂ/i 1+ Z Pa; @—jQWV(U'Fi)
=1 t=—L
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This frequency response is analyzed with an AR MAhus,q; coefficients may be calculated as follows:
(ARMA) modeling in order to estimate,, and p,, coeffi-

cients. The ARMA frequency response is defined by av-L U-L 1 0 e 0
ay_L+1 CU-L+1 C1 1 <o 0
Qo Col=] : :
1+ qu(i_ﬂwq aU4L—1 cv4rL—1 €20-1 c20—2 -+ 0
=1 r r _ cee ]
hamia(v) = —5 (34) U AR
1+ Z apei2mvp bu-r
e (42)
whereb, are the MA coefficients and,, the AR coefficients bg“—l
of this function. Identification between (32) and (33) yields U+tL
Accordingly, only the first, second, and third subsequences
b, =buyi (35) of the autocorrelation sequence are necessary to calculate all
Pa, = QU 1i (36) parameters, which are
[0'2 Y= (V) av—r, -+, auyr, bu—r, -+, busL].
where i verifies —L < i < L. Otherq; and b; values are AR
supposed to be null, excep = 1 andby = 1. This condition leads taV > 2U + L and P;, > 2U + L (see
The a; and b; coefficients are related to; coefficients Fig. 4). To conclude, the
through
[aiRv ’Yac(l/)a au—L, ", AQU+L, bU—L7 Ty bU-l—L]
PL . . Q .
<1 + Z Cﬂi_ﬂmﬂ) <1 + Z Cﬂ_ﬂm) calculated parameters allows ), 5(f), andp(f) parameters
=K+l 7=l estimation so that one is able to find out noise behaviors of the
P oy DUT with knowledge of the5-parameters. Furthermore, a way
=1+ Z cie 7 (37) 1o verify the method capabilities is to compa¥ge; extracted
p=l by this method withS;; provided by the founder.

Equation (36) leads to the following:
V. NOISEWAVE SOURCES AND

Q NOISE-PARAMETERS EXTRACTION
Z biCrni = an, forn >0 (38) . . .
— After several extractions for different drain—current values
o and different input reflection coefficients, we find out that a
Z bicng =0, for n > P. (39) first order estimate for thé; value is
k=0 r
by ~ =2 (43)
Ccy

Aside from this,by = 1 andb;, coefficients are null fok = 1

tok=U-L-1landk=U+L+1t0Q so that(39) yields whenT'[” is an open load. Equation (43) is derived from (36)

U+L where amplitudes dof; coefficients fori # U are mainly close
Z biCnk = —Cn, forn > U + L. (40) to zero. Equation (43) underlines the existence of a correlation
k=U—T, term. Obviously, if the amplitude of tHe; coefficient is nearly

zero (much smaller than 0.1), one may presume uncorrelated
Equation (40) yields the matrix equation in (41), built byoise sources for the DUT. The simplified expressiontier

setting different values fon (n € [2U — L, 2U + LJ): in (43) leads to the”(v) first-order value given by
cy Cy—1 Cy_s9 cee Cy—2L C(l/) ~ [01790(1/) @ (44)
CU+1 v cU-1 T CU-2L41 'Y (va2(v) v
CU42—1 CU42L—2 CU42L—3 *°- cU—1 wherel“_EL01 is an open load. Then, the standard noise parameters
CU+2L  CU42L—1 CU42L—2 - cu may be derived from the noise-wave sources to make the
bu—r Cot—I. comparison easier with other usual extraction methods [10].
by — 141 CoU— L1 Let us introducd’c and Sy, which simplify the following
. _ : (41) standard noise-parameters expression:
buar— CoU4L— b

butL COULL S
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whereby ., is the part ofbi; not correlated withbye. Now,

we are able to define a new reflection coefficient: and, therefore,
Siipqg = Su —Te. (46) ARG (Topt) = —ARG (S11pq,)- (49)
Then, the standard noise parameters may be written [4], [nimum noise factor:
as follows: oo |2
N2
Normalized noise resistance: Foin =1+ Sl ) [1 = [S11eq| Loptl].  (50)
1 bz |?
=7 S5l 14 Si1pel? + (|bx1ve ) |- ITopt| values should be derived from (48) by solving a second-
degree equation.
(47
Optlmum reflection coefficient: V1. RESULTS AND COMPARISONS
* 2
Lopt _ SllEQ<|bN2| ) The measurements are made in a 2.8-18-GHz frequency

|1+ Lopel?  (|bn2]?) - [1 4 S11pgl? + [S21 3 (|bN1ye [2) range with a 38-MHz frequency step; in this case, a GEC-

(48) MARCONI 4 x 75 pm transistor atV,, = —0.7V, Vgo =5
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Fig. 16. R, comparison.
Fig. 13. Comparison between extracted anglé'of and S1; angle given
by the founder. Sy reflection coefficient of the transistor (curve 2) and, on

the other handS;; simulated from small-signal parameters
V, and I, = 10 mA. Fig. 5 givesy,(f) and~,(f) value for (curve 1). Correspondin@in = (igi})/+/(lig|*)(|ial*) [3]
an open load while Fig. 6 indicatés;; PSD which is fitted Vvalue calculated with these results is mainly imaginary, as
by an AR modeling as well. Fig. 7 shows the autocorrelaticfhown in Fig. 14, respecting [8]. After this extraction, the
function obtain by an inverse FT and we find out thats calculation of theby; PSD value with the acknowledgment
approximately 4 ns, corresponding & = 61. Fig. 8 gives of the by PSD becomes easy. Finally, comparisons are made
the amplitude ofc; coefficients where the first and second!ith standard noise parameters given by GEC-MARCONI and
scale onX-axis shows the equivalence between the subscrifPSe measured by a laboratory (Figs. 15-17).
i and the time variabler3 ; parameter is approximately 1.02.
Fig. 9 reports the amplitude df; coefficients while Fig. 10 VII. CONCLUSIONS

shows amplitude of; coefficients. Furthermore, Fig. 11 gives The noise-wave representation offers an alternative analysis

(bn1b%,) extracted value calculated with relation in (44which allows time-domain representation of distributed vari-
and Figs. 12 and 13 reports, on the one hand, the extractddes. Algorithms derived from spectral parametric modeling
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